积分表及公式推导

(一)含有 ax+b\sqrt{ax+b} 的积分

  1. dxax+b=1alnax+b+C\displaystyle\int\dfrac{\mathrm{d}x}{ax+b}=\dfrac{1}{a}\ln|ax+b|+C

dxax+b=1ad(ax+b)ax+b=1alnax+b+C\begin{align} \int\dfrac{\mathrm{d}x}{ax+b} & = \dfrac{1}{a}\int\dfrac{\mathrm{d}(ax+b)}{ax+b}\\ & = \dfrac{1}{a}\ln|ax+b|+C \end{align}

  1. (ax+b)μdx=1a(μ+1)(ax+b)μ+1+C(μ1)\displaystyle\int(ax+b)^\mu\mathrm{d}x=\dfrac{1}{a(\mu+1)}(ax+b)^{\mu+1}+C\quad(\mu\neq1)

(ax+b)μdx=1a(ax+b)μd(ax+b)=1a(μ+1)(ax+b)μ+1+C(μ1)\begin{align} \int(ax+b)^\mu\mathrm{d}x & =\dfrac{1}{a}\int(ax+b)^\mu\mathrm{d}(ax+b)\\ & = \dfrac{1}{a(\mu+1)}(ax+b)^{\mu+1}+C (\mu\neq1) \end{align}

  1. xax+bdx=1a2(ax+bblnax+b)+C\displaystyle\int\dfrac{x}{ax+b}\mathrm{d}x=\dfrac{1}{a^2}(ax+b-b\ln|ax+b|)+C

xax+bdx=(1aba1ax+b)dx=1axba1alnax+b+C=1a2(axblnax+b)+C=1a2(ax+bblnax+b)+C\begin{align} & \int\dfrac{x}{ax+b}\mathrm{d}x\\ = & \int\left(\frac{1}{a}-\frac{b}{a}\cdot\frac{1}{ax+b}\right)\mathrm{d}x\\ = & \frac{1}{a}x-\frac{b}{a}\cdot\frac{1}{a}\ln|ax+b|+C'\\ = & \frac{1}{a^2}(ax-b\ln|ax+b|)+C'\\ = & \frac{1}{a^2}(ax+b-b\ln|ax+b|)+C \end{align}

  1. x2ax+bdx=1a3[12(ax+b)22b(ax+b)+b2lnax+b]+C\displaystyle\int\dfrac{x^2}{ax+b}\mathrm{d}x=\dfrac{1}{a^3}\left[\dfrac{1}{2}(ax+b)^2-2b(ax+b)+b^2\ln|ax+b|\right]+C

x2ax+bdx=1a2(ax+b)22ba2(ax+b)+b2a2ax+bdx=1a2(ax+b)dx2ba2dx+b2a21ax+bdx=1a2(12ax2+bx)2ba2x+b2a3lnax+b+C=1a3[12(ax+b)22b(ax+b)+b2lnax+b]+C\begin{align} & \int\frac{x^2}{ax+b}\mathrm{d}x\\ = & \int\frac{\frac{1}{a^2}(ax+b)^2-\frac{2b}{a^2}(ax+b)+\frac{b^2}{a^2}}{ax+b}\mathrm{d}x\\ = & \frac{1}{a^2}\int(ax+b)\mathrm{d}x-\frac{2b}{a^2}\int\mathrm{d}x+\frac{b^2}{a^2}\int\frac{1}{ax+b}\mathrm{d}x\\ = & \frac{1}{a^2}\left(\frac{1}{2}ax^2+bx\right)-\frac{2b}{a^2}x+\frac{b^2}{a^3}\ln|ax+b|+C\\ = & \dfrac{1}{a^3}\left[\dfrac{1}{2}(ax+b)^2-2b(ax+b)+b^2\ln|ax+b|\right]+C \end{align}

  1. dxx(ax+b)=1blnax+bx+C\displaystyle\int\dfrac{\mathrm{d}x}{x(ax+b)}=-\dfrac{1}{b}\ln\left|\dfrac{ax+b}{x}\right|+C

dxx(ax+b)=(1bxabax+b)dx=1blnx1blnax+b+C=1blnax+bx+C\begin{align} & \int\dfrac{\mathrm{d}x}{x(ax+b)}\\ = & \int\left(\frac{\frac{1}{b}}{x}-\frac{\frac{a}{b}}{ax+b}\right)\mathrm{d}x\\ = & \frac{1}{b}\ln|x|-\frac{1}{b}\ln|ax+b|+C\\ = & -\frac{1}{b}\ln\left|\frac{ax+b}{x}\right|+C \end{align}

  1. dxx2(ax+b)=1bx+ab2lnax+bx+C\displaystyle\int\dfrac{\mathrm{d}x}{x^2(ax+b)}=-\dfrac{1}{bx}+\dfrac{a}{b^2}\ln\left|\dfrac{ax+b}{x}\right|+C

dxx2(ax+b)=(1bx2+ab2x+a2b2ax+b)dx=1b1x2dxab21xdx+a2b21ax+bdx=1bx+ab2lnax+bx+C\begin{align} & \int\dfrac{\mathrm{d}x}{x^2(ax+b)}\\ = & \int\left(\frac{\frac{1}{b}}{x^2}+\frac{-\frac{a}{b^2}}{x}+\frac{\frac{a^2}{b^2}}{ax+b}\right)\mathrm{d}x\\ = & \frac{1}{b}\int\frac{1}{x^2}\mathrm{d}x-\frac{a}{b^2}\int\frac{1}{x}\mathrm{d}x+\frac{a^2}{b^2}\int\frac{1}{ax+b}\mathrm{d}x\\ = & -\dfrac{1}{bx}+\dfrac{a}{b^2}\ln\left|\dfrac{ax+b}{x}\right|+C \end{align}

  1. x(ax+b)2dx=1a2[lnax+b+bax+b]+C\displaystyle\int\dfrac{x}{(ax+b)^2}\mathrm{d}x=\dfrac{1}{a^2}\left[\ln|ax+b|+\dfrac{b}{ax+b}\right]+C

x(ax+b)2dx=(1aax+bba(ax+b)2)dx=1a1ax+bdxba1(ax+b)2dx=1a2[lnax+b+bax+b]+C\begin{align} & \int\dfrac{x}{(ax+b)^2}\mathrm{d}x\\ = & \int\left(\frac{\frac{1}{a}}{ax+b}-\frac{\frac{b}{a}}{(ax+b)^2}\right)\mathrm{d}x\\ = & \frac{1}{a}\int\frac{1}{ax+b}\mathrm{d}x-\frac{b}{a}\int\frac{1}{(ax+b)^2}\mathrm{d}x\\ = & \dfrac{1}{a^2}\left[\ln|ax+b|+\dfrac{b}{ax+b}\right]+C \end{align}

  1. x2(ax+b)2dx=1a3(ax+b2blnax+bb2ax+b)+C\displaystyle\int\dfrac{x^2}{(ax+b)^2}\mathrm{d}x=\dfrac{1}{a^3}\left(ax+b-2b\ln|ax+b|-\dfrac{b^2}{ax+b}\right)+C

x2(ax+b)2dx=1a2(ax+b)22ba2(ax+b)+b2a2(ax+b)2dx=1a2dx2ba21ax+bdx+b2a21(ax+b)2dx=1a3(ax2blnax+bb2ax+b)+C=1a3(ax+b2blnax+bb2ax+b)+C\begin{align} & \int\dfrac{x^2}{(ax+b)^2}\mathrm{d}x\\ = & \int\frac{\frac{1}{a^2}(ax+b)^2-\frac{2b}{a^2}(ax+b)+\frac{b^2}{a^2}}{(ax+b)^2}\mathrm{d}x\\ = & \frac{1}{a^2}\int\mathrm{d}x-\frac{2b}{a^2}\int\frac{1}{ax+b}\mathrm{d}x+\frac{b^2}{a^2}\int\frac{1}{(ax+b)^2}\mathrm{d}x\\ = & \frac{1}{a^3}\left(ax-2b\ln|ax+b|-\frac{b^2}{ax+b}\right)+C'\\ = & \dfrac{1}{a^3}\left(ax+b-2b\ln|ax+b|-\dfrac{b^2}{ax+b}\right)+C \end{align}

  1. dxx(ax+b)2=1b(ax+b)1b2lnax+bx+C\displaystyle\int\dfrac{\mathrm{d}x}{x(ax+b)^2}=\dfrac{1}{b(ax+b)}-\dfrac{1}{b^2}\ln\left|\dfrac{ax+b}{x}\right|+C

dxx(ax+b)2=(1b2xab2ax+b+ab(ax+b)2)dx=1b21xdxab21ax+bdxab1(ax+b)2dx=1b(ax+b)1b2lnax+bx+C\begin{align} & \int\dfrac{\mathrm{d}x}{x(ax+b)^2}\\ = & \int\left(\frac{\frac{1}{b^2}}{x}-\frac{\frac{a}{b^2}}{ax+b}+\frac{-\frac{a}{b}}{(ax+b)^2}\right)\mathrm{d}x\\ = & \frac{1}{b^2}\int\frac{1}{x}\mathrm{d}x-\frac{a}{b^2}\int\frac{1}{ax+b}\mathrm{d}x-\frac{a}{b}\int\frac{1}{(ax+b)^2}\mathrm{d}x\\ = & \dfrac{1}{b(ax+b)}-\dfrac{1}{b^2}\ln\left|\dfrac{ax+b}{x}\right|+C \end{align}

(二)含有 ax+b\sqrt{ax+b} 的积分

  1. ax+bdx=23a(ax+b)3+C\displaystyle\int\sqrt{ax+b}\mathrm{d}x=\dfrac{2}{3a}\sqrt{(ax+b)^3}+C

ax+bdx=1aax+bd(ax+b)=23a(ax+b)3+C\begin{align} & \int\sqrt{ax+b}\mathrm{d}x\\ = & \frac{1}{a}\int\sqrt{ax+b}\mathrm{d}(ax+b)\\ = & \frac{2}{3a}\sqrt{(ax+b)^3}+C \end{align}

  1. xax+bdx=215a2(3ax2b)(ax+b)3+C\displaystyle\int x\sqrt{ax+b}\mathrm{d}x=\dfrac{2}{15a^2}(3ax-2b)\sqrt{(ax+b)^3}+C

xax+bdx=[(1a(ax+b)ba)ax+b]dx=1a(ax+b)32dxbaax+bdx=25a2(ax+b)52b3a2(ax+b)32+C=215a2(3ax2b)(ax+b)3+C\begin{align} & \int x\sqrt{ax+b}\mathrm{d}x\\ = & \int\left[\left(\frac{1}{a}(ax+b)-\frac{b}{a}\right)\sqrt{ax+b}\right]\mathrm{d}x\\ = & \frac{1}{a}\int(ax+b)^{\frac{3}{2}}\mathrm{d}x-\frac{b}{a}\int\sqrt{ax+b}\mathrm{d}x\\ = & \frac{2}{5a^2}(ax+b)^{\frac{5}{2}}-\frac{b}{3a^2}(ax+b)^{\frac{3}{2}}+C\\ = & \dfrac{2}{15a^2}(3ax-2b)\sqrt{(ax+b)^3}+C \end{align}

  1. x2ax+bdx=2105a3(15a2x212abx+8b2)(ax+b)3+C\displaystyle\int x^2\sqrt{ax+b}\mathrm{d}x=\dfrac{2}{105a^3}(15a^2x^2-12abx+8b^2)\sqrt{(ax+b)^3}+C

x2ax+bdx=[1a2(ax+b)22ba2(ax+b)+b2a2]ax+bdx=1a2(ax+b)52dx2ba2(ax+b)32dx+b2a2(ax+b)12dx=27a3(ax+b)724b5a3(ax+b)52+2b23a3(ax+b)32=2105a3(15a2x212abx+8b2)(ax+b)3+C\begin{align} & \int x^2\sqrt{ax+b}\mathrm{d}x\\ = & \int\left[\frac{1}{a^2}(ax+b)^2-\frac{2b}{a^2}(ax+b)+\frac{b^2}{a^2}\right]\sqrt{ax+b}\mathrm{d}x\\ = & \frac{1}{a^2}\int(ax+b)^{\frac{5}{2}}\mathrm{d}x-\frac{2b}{a^2}\int(ax+b)^{\frac{3}{2}}\mathrm{d}x+\frac{b^2}{a^2}\int(ax+b)^{\frac{1}{2}}\mathrm{d}x\\ = & \frac{2}{7a^3}(ax+b)^{\frac{7}{2}}-\frac{4b}{5a^3}(ax+b)^{\frac{5}{2}}+\frac{2b^2}{3a^3}(ax+b)^{\frac{3}{2}}\\ = & \dfrac{2}{105a^3}(15a^2x^2-12abx+8b^2)\sqrt{(ax+b)^3}+C \end{align}

  1. xax+bdx=23a2(ax2b)ax+b+C\displaystyle\int\dfrac{x}{\sqrt{ax+b}}\mathrm{d}x=\dfrac{2}{3a^2}(ax-2b)\sqrt{ax+b}+C

xax+bdx=1a(ax+b)baax+b=1aax+bdxba1ax+bdx=23a2(ax+b)322ba2(ax+b)12+C=23a2(ax2b)ax+b+C\begin{align} & \int\dfrac{x}{\sqrt{ax+b}}\mathrm{d}x\\ = & \int\frac{\frac{1}{a}(ax+b)-\frac{b}{a}}{\sqrt{ax+b}}\\ = & \frac{1}{a}\int\sqrt{ax+b}\mathrm{d}x-\frac{b}{a}\int\frac{1}{\sqrt{ax+b}}\mathrm{d}x\\ = & \frac{2}{3a^2}(ax+b)^{\frac{3}{2}}-\frac{2b}{a^2}(ax+b)^{\frac{1}{2}}+C\\ = & \dfrac{2}{3a^2}(ax-2b)\sqrt{ax+b}+C \end{align}

  1. x2ax+bdx=215a3(3a2x24abx+8b2)ax+b+C\displaystyle\int\dfrac{x^2}{\sqrt{ax+b}}\mathrm{d}x=\dfrac{2}{15a^3}(3a^2x^2-4abx+8b^2)\sqrt{ax+b}+C

x2ax+bdx=1a2(ax+b)22ba2(ax+b)+b2a2ax+bdx=1a2(ax+b)32dx2ba2(ax+b)12dx+b2a2(ax+b)12dx=25a3(ax+b)524b3a3(ax+b)32+2b2a3(ax+b)12+C=215a3(3a2x24abx+8b2)ax+b+C\begin{align} & \int\dfrac{x^2}{\sqrt{ax+b}}\mathrm{d}x\\ = & \int\frac{\frac{1}{a^2}(ax+b)^2-\frac{2b}{a^2}(ax+b)+\frac{b^2}{a^2}}{\sqrt{ax+b}}\mathrm{d}x\\ = & \frac{1}{a^2}\int(ax+b)^{\frac{3}{2}}\mathrm{d}x-\frac{2b}{a^2}\int(ax+b)^{\frac{1}{2}}\mathrm{d}x+\frac{b^2}{a^2}\int(ax+b)^{-\frac{1}{2}}\mathrm{d}x\\ = & \frac{2}{5a^3}(ax+b)^{\frac{5}{2}}-\frac{4b}{3a^3}(ax+b)^{\frac{3}{2}}+\frac{2b^2}{a^3}(ax+b)^{\frac{1}{2}}+C\\ = & \dfrac{2}{15a^3}(3a^2x^2-4abx+8b^2)\sqrt{ax+b}+C \end{align}

  1. dxxax+b={1blnax+bbax+b+b+C(b>0)2barctanax+bb+C(b<0)\displaystyle\int\dfrac{\mathrm{d}x}{x\sqrt{ax+b}}=\begin{cases}\dfrac{1}{\sqrt{b}}\ln\left|\dfrac{\sqrt{ax+b}-\sqrt{b}}{\sqrt{ax+b}+\sqrt{b}}\right|+C&(b>0)\\\dfrac{2}{\sqrt{-b}}\arctan\sqrt{\dfrac{ax+b}{-b}}+C&(b<0)\end{cases}

u=ax+bu=\sqrt{ax+b}、则 dx=2uadu\mathrm{d}x=\dfrac{2u}{a}\mathrm{d}u

b>0b>0

dxxax+b=21u2bdu=21(ub)(u+b)du=1b(1ub1u+b)du=1blnubu+b+C==1blnax+bbax+b+b+C\begin{align} \int\dfrac{\mathrm{d}x}{x\sqrt{ax+b}} & = 2\int\frac{1}{u^2-b}\mathrm{d}u\\ & = 2\int\frac{1}{(u-\sqrt{b})(u+\sqrt{b})}\mathrm{d}u\\ & = \frac{1}{\sqrt{b}}\int\left(\frac{1}{u-\sqrt{b}}-\frac{1}{u+\sqrt{b}}\right)\mathrm{d}u\\ & = \frac{1}{\sqrt{b}}\ln\left|\frac{u-\sqrt{b}}{u+\sqrt{b}}\right|+C\\ & = =\dfrac{1}{\sqrt{b}}\ln\left|\dfrac{\sqrt{ax+b}-\sqrt{b}}{\sqrt{ax+b}+\sqrt{b}}\right|+C \end{align}

b<0b<0

dxxax+b=21u2+(b)du=2b11+(ub)du=2barctanub+C=2barctanax+bb+C\begin{align} \int\dfrac{\mathrm{d}x}{x\sqrt{ax+b}} & = 2\int\frac{1}{u^2+(-b)}\mathrm{d}u\\ & = \frac{2}{-b}\int\frac{1}{1+\left(\frac{u}{\sqrt{-b}}\right)}\mathrm{d}u\\ & = \frac{2}{\sqrt{-b}}\arctan\frac{u}{\sqrt{-b}}+C\\ & = \dfrac{2}{\sqrt{-b}}\arctan\sqrt{\dfrac{ax+b}{-b}}+C \end{align}

  1. dxx2ax+b=ax+bbxa2bdxxax+b\displaystyle\int\dfrac{\mathrm{d}x}{x^2\sqrt{ax+b}}=-\dfrac{\sqrt{ax+b}}{bx}-\dfrac{a}{2b}\displaystyle\int\dfrac{\mathrm{d}x}{x\sqrt{ax+b}}

dxx2ax+b=(abxax+b+1bax+bx2)dx=ab1xax+bdx1bax+bxd(1x)=ab1xax+bdxax+bbx+a2b1xax+bdx=ax+bbxa2bdxxax+b\begin{align} & \int\dfrac{\mathrm{d}x}{x^2\sqrt{ax+b}}\\ = & \int\left(\frac{-\frac{a}{b}}{x\sqrt{ax+b}}+\frac{\frac{1}{b}\sqrt{ax+b}}{x^2}\right)\mathrm{d}x\\ = & -\frac{a}{b}\int\frac{1}{x\sqrt{ax+b}}\mathrm{d}x-\frac{1}{b}\int\frac{\sqrt{ax+b}}{x}\mathrm{d}\left(\dfrac{1}{x}\right)\\ = & -\frac{a}{b}\int\frac{1}{x\sqrt{ax+b}}\mathrm{d}x-\frac{\sqrt{ax+b}}{bx}+\frac{a}{2b}\int\frac{1}{x\sqrt{ax+b}}\mathrm{d}x\\ = & -\dfrac{\sqrt{ax+b}}{bx}-\dfrac{a}{2b}\displaystyle\int\dfrac{\mathrm{d}x}{x\sqrt{ax+b}} \end{align}

  1. ax+bxdx=2ax+b+bdxxax+b\displaystyle\int\dfrac{\sqrt{ax+b}}{x}\mathrm{d}x=2\sqrt{ax+b}+b\displaystyle\int\dfrac{\mathrm{d}x}{x\sqrt{ax+b}}

\begin{align} \end{align}

  1. ax+bx2dx=ax+bx+a2dxxax+b\displaystyle\int\dfrac{\sqrt{ax+b}}{x^2}\mathrm{d}x=-\dfrac{\sqrt{ax+b}}{x}+\dfrac{a}{2}\displaystyle\int\dfrac{\mathrm{d}x}{x\sqrt{ax+b}}

\begin{align} \end{align}

(三)含有 x2±a2x^2 \pm a^2 的积分

  1. dxx2+a2=1aarctanxa+C\displaystyle\int\dfrac{\mathrm{d}x}{x^2+a^2}=\dfrac{1}{a}\arctan\dfrac{x}{a}+C

  2. dx(x2+a2)n=x2(n1)a2(x2+a2)n1+2n32(n1)a2dx(x2+a2)n1\displaystyle\int\dfrac{\mathrm{d}x}{(x^2+a^2)^n}=\dfrac{x}{2(n-1)a^2(x^2+a^2)^{n-1}}+\dfrac{2n-3}{2(n-1)a^2}\displaystyle\int\dfrac{\mathrm{d}x}{(x^2+a^2)^{n-1}}

  3. dxx2a2=12alnxax+a+C\displaystyle\int\dfrac{\mathrm{d}x}{x^2-a^2}=\dfrac{1}{2a}\ln\left|\dfrac{x-a}{x+a}\right|+C

(四)含有 ax2+bax^2+b (a>0)(a>0) 的积分

  1. dxax2+b={1abarctanabx+C(b>0)12ablnaxbax+b+C(b<0)\displaystyle\int\dfrac{\mathrm{d}x}{ax^2+b}=\begin{cases}\dfrac{1}{\sqrt{ab}}\arctan\sqrt{\dfrac{a}{b}}x+C&(b>0)\\\dfrac{1}{2\sqrt{-ab}}\ln\left|\dfrac{\sqrt{a}x-\sqrt{-b}}{\sqrt{a}x+\sqrt{-b}}\right|+C&(b<0)\end{cases}

  2. xax2+bdx=12alnax2+b+C\displaystyle\int\dfrac{x}{ax^2+b}\mathrm{d}x=\dfrac{1}{2a}\ln|ax^2+b|+C

  3. x2ax2+bdx=xabadxax2+b\displaystyle\int\dfrac{x^2}{ax^2+b}\mathrm{d}x=\dfrac{x}{a}-\dfrac{b}{a}\displaystyle\int\dfrac{\mathrm{d}x}{ax^2+b}

  4. dxx(ax2+b)=12blnx2ax2+b+C\displaystyle\int\dfrac{\mathrm{d}x}{x(ax^2+b)}=\dfrac{1}{2b}\ln\left|\dfrac{x^2}{ax^2+b}\right|+C

  5. dxx2(ax2+b)=1bxabdxax2+b\displaystyle\int\dfrac{\mathrm{d}x}{x^2(ax^2+b)}=-\dfrac{1}{bx}-\dfrac{a}{b}\displaystyle\int\dfrac{\mathrm{d}x}{ax^2+b}

  6. dxx3(ax2+b)=a2b2lnax2+bx212bx2+C\displaystyle\int\dfrac{\mathrm{d}x}{x^3(ax^2+b)}=\dfrac{a}{2b^2}\ln\left|\dfrac{ax^2+b}{x^2}\right|-\dfrac{1}{2bx^2}+C

  7. dx(ax2+b)2=x2b(ax2+b)+12bdxax2+b\displaystyle\int\dfrac{\mathrm{d}x}{(ax^2+b)^2}=\dfrac{x}{2b(ax^2+b)}+\dfrac{1}{2b}\displaystyle\int\dfrac{\mathrm{d}x}{ax^2+b}

(五)含有 ax2+bx+cax^2+bx+c (a>0)(a>0) 的积分

  1. dxax2+bx+c={24acb2arctan2ax+b4acb2+C(b2<4ac)1b24acln2ax+bb24ac2ax+b+b24ac+C(b2>4ac)\displaystyle\int\dfrac{\mathrm{d}x}{ax^2+bx+c}=\begin{cases}\dfrac{2}{\sqrt{4ac-b^2}}\arctan\dfrac{2ax+b}{\sqrt{4ac-b^2}}+C\quad(b^2<4ac)\\ \dfrac{1}{\sqrt{b^2-4ac}}\ln\left|\dfrac{2ax+b-\sqrt{b^2-4ac}}{2ax+b+\sqrt{b^2-4ac}}\right|+C\quad(b^2>4ac)\end{cases}

  2. xax2+bx+cdx=12alnax2+bx+cb2adxax2+bx+c\displaystyle\int\dfrac{x}{ax^2+bx+c}\mathrm{d}x=\dfrac{1}{2a}\ln|ax^2+bx+c|-\dfrac{b}{2a}\displaystyle\int\dfrac{\mathrm{d}x}{ax^2+bx+c}

(六)含有 x2+a2\sqrt{x^2+a^2} (a>0)(a>0) 的积分

  1. dxx2+a2=arshxa+C1=ln(x+x2+a2)+C\displaystyle\int\dfrac{\mathrm{d}x}{\sqrt{x^2+a^2}}=\operatorname{arsh}\dfrac{x}{a}+C_1=\ln(x+\sqrt{x^2+a^2})+C

  2. dx(x2+a2)3=xa2x2+a2+C\displaystyle\int\dfrac{\mathrm{d}x}{\sqrt{(x^2+a^2)^3}}=\dfrac{x}{a^2\sqrt{x^2+a^2}}+C

  3. xx2+a2dx=x2+a2+C\displaystyle\int\dfrac{x}{\sqrt{x^2+a^2}}\mathrm{d}x=\sqrt{x^2+a^2}+C

  4. x(x2+a2)3dx=1x2+a2+C\displaystyle\int\dfrac{x}{\sqrt{(x^2+a^2)^3}}\mathrm{d}x=-\dfrac{1}{\sqrt{x^2+a^2}}+C

  5. x2x2+a2dx=x2x2+a2a22ln(x+x2+a2)+C\displaystyle\int\dfrac{x^2}{\sqrt{x^2+a^2}}\mathrm{d}x=\dfrac{x}{2}\sqrt{x^2+a^2}-\dfrac{a^2}{2}\ln(x+\sqrt{x^2+a^2})+C

  6. x2(x2+a2)3dx=xx2+a2+ln(x+x2+a2)+C\displaystyle\int\dfrac{x^2}{\sqrt{(x^2+a^2)^3}}\mathrm{d}x=-\dfrac{x}{\sqrt{x^2+a^2}}+\ln(x+\sqrt{x^2+a^2})+C

  7. dxxx2+a2=1alnx2+a2ax+C\displaystyle\int\dfrac{\mathrm{d}x}{x\sqrt{x^2+a^2}}=\dfrac{1}{a}\ln\dfrac{\sqrt{x^2+a^2}-a}{|x|}+C

  8. dxx2x2+a2=x2+a2a2x+C\displaystyle\int\dfrac{\mathrm{d}x}{x^2\sqrt{x^2+a^2}}=-\dfrac{\sqrt{x^2+a^2}}{a^2x}+C

  9. x2+a2dx=x2x2+a2+a22ln(x+x2+a2)+C\displaystyle\int\sqrt{x^2+a^2}\mathrm{d}x=\dfrac{x}{2}\sqrt{x^2+a^2}+\dfrac{a^2}{2}\ln(x+\sqrt{x^2+a^2})+C

  10. (x2+a2)3dx=x8(2x2+5a2)x2+a2+38a4ln(x+x2+a2)+C\displaystyle\int\sqrt{(x^2+a^2)^3}\mathrm{d}x=\dfrac{x}{8}(2x^2+5a^2)\sqrt{x^2+a^2}+\dfrac{3}{8}a^4\ln(x+\sqrt{x^2+a^2})+C

  11. xx2+a2dx=13(x2+a2)3+C\displaystyle\int x\sqrt{x^2+a^2}\mathrm{d}x=\dfrac{1}{3}\sqrt{(x^2+a^2)^3}+C

  12. x2x2+a2dx=x8(2x2+a2)x2+a2a48ln(x+x2+a2)+C\displaystyle\int x^2\sqrt{x^2+a^2}\mathrm{d}x=\dfrac{x}{8}(2x^2+a^2)\sqrt{x^2+a^2}-\dfrac{a^4}{8}\ln(x+\sqrt{x^2+a^2})+C

  13. x2+a2xdx=x2+a2+alnx2+a2ax+C\displaystyle\int\dfrac{\sqrt{x^2+a^2}}{x}\mathrm{d}x=\sqrt{x^2+a^2}+a\ln\dfrac{\sqrt{x^2+a^2}-a}{|x|}+C

  14. x2+a2x2dx=x2+a2x+ln(x+x2+a2)+C\displaystyle\int\dfrac{\sqrt{x^2+a^2}}{x^2}\mathrm{d}x=-\dfrac{\sqrt{x^2+a^2}}{x}+\ln(x+\sqrt{x^2+a^2})+C

(七)含有 x2a2\sqrt{x^2-a^2} (a>0)(a>0) 的积分

  1. dxx2a2=xxarchxa+C1=lnx+x2a2+C\displaystyle\int\dfrac{\mathrm{d}x}{\sqrt{x^2-a^2}}=\dfrac{x}{|x|}\mathrm{arch} \dfrac{|x|}{a}+C_1=\ln|x+\sqrt{x^2-a^2}|+C

  2. dx(x2a2)3=xa2x2a2+C\displaystyle\int\dfrac{\mathrm{d}x}{\sqrt{(x^2-a^2)^3}}=-\dfrac{x}{a^2\sqrt{x^2-a^2}}+C

  3. xx2a2dx=x2a2+C\displaystyle\int\dfrac{x}{\sqrt{x^2-a^2}}\mathrm{d}x=\sqrt{x^2-a^2}+C

  4. x(x2a2)3dx=1x2a2+C\displaystyle\int\dfrac{x}{\sqrt{(x^2-a^2)^3}}\mathrm{d}x=-\dfrac{1}{\sqrt{x^2-a^2}}+C

  5. x2x2a2dx=x2x2a2+a22lnx+x2a2+C\displaystyle\int\dfrac{x^2}{\sqrt{x^2-a^2}}\mathrm{d}x=\dfrac{x}{2}\sqrt{x^2-a^2}+\dfrac{a^2}{2}\ln|x+\sqrt{x^2-a^2}|+C

  6. x2(x2a2)3dx=xx2a2+lnx+x2a2+C\displaystyle\int\dfrac{x^2}{\sqrt{(x^2-a^2)^3}}\mathrm{d}x=-\dfrac{x}{\sqrt{x^2-a^2}}+\ln|x+\sqrt{x^2-a^2}|+C

  7. dxxx2a2=1aarccosax+C\displaystyle\int\dfrac{\mathrm{d}x}{x\sqrt{x^2-a^2}}=\dfrac{1}{a}\arccos\dfrac{a}{|x|}+C

  8. dxx2x2a2=x2a2a2x+C\displaystyle\int\dfrac{\mathrm{d}x}{x^2\sqrt{x^2-a^2}}=\dfrac{\sqrt{x^2-a^2}}{a^2x}+C

  9. x2a2dx=x2x2a2a22lnx+x2a2+C\displaystyle\int\sqrt{x^2-a^2}\mathrm{d}x=\dfrac{x}{2}\sqrt{x^2-a^2}-\dfrac{a^2}{2}\ln|x+\sqrt{x^2-a^2}|+C

  10. (x2a2)3dx=x8(2x25a2)x2a2+38a4lnx+x2a2+C\displaystyle\int\sqrt{(x^2-a^2)^3}\mathrm{d}x=\dfrac{x}{8}(2x^2-5a^2)\sqrt{x^2-a^2}+\dfrac{3}{8}a^4\ln|x+\sqrt{x^2-a^2}|+C

  11. xx2a2dx=13(x2a2)3+C\displaystyle\int x\sqrt{x^2-a^2}\mathrm{d}x=\dfrac{1}{3}\sqrt{(x^2-a^2)^3}+C

  12. x2x2a2dx=x8(2x2a2)x2a2a48lnx+x2a2+C\displaystyle\int x^2\sqrt{x^2-a^2}\mathrm{d}x=\dfrac{x}{8}(2x^2-a^2)\sqrt{x^2-a^2}-\dfrac{a^4}{8}\ln|x+\sqrt{x^2-a^2}|+C

  13. x2a2xdx=x2a2aarccosax+C\displaystyle\int\dfrac{\sqrt{x^2-a^2}}{x}\mathrm{d}x=\sqrt{x^2-a^2}-a\arccos\dfrac{a}{|x|}+C

  14. x2a2x2dx=x2a2x+lnx+x2a2+C\displaystyle\int\dfrac{\sqrt{x^2-a^2}}{x^2}\mathrm{d}x=-\dfrac{\sqrt{x^2-a^2}}{x}+\ln|x+\sqrt{x^2-a^2}|+C

(八)含有 a2x2\sqrt{a^2-x^2} (a>0)(a>0) 的积分

  1. dxa2x2=arcsinxa+C\displaystyle\int\dfrac{\mathrm{d}x}{\sqrt{a^2-x^2}}=\arcsin\dfrac{x}{a}+C

  2. dx(a2x2)3=xa2a2x2+C\displaystyle\int\dfrac{\mathrm{d}x}{\sqrt{(a^2-x^2)^3}}=\dfrac{x}{a^2\sqrt{a^2-x^2}}+C

  3. xa2x2dx=a2x2+C\displaystyle\int\dfrac{x}{\sqrt{a^2-x^2}}\mathrm{d}x=-\sqrt{a^2-x^2}+C

  4. x2a2x2dx=x2a2x2+a22arcsinxa+C\displaystyle\int\dfrac{x^2}{\sqrt{a^2-x^2}}\mathrm{d}x=-\dfrac{x}{2}\sqrt{a^2-x^2}+\dfrac{a^2}{2}\arcsin\dfrac{x}{a}+C

  5. x2(a2x2)3dx=xa2x2arcsinxa+C\displaystyle\int\dfrac{x^2}{\sqrt{(a^2-x^2)^3}}\mathrm{d}x=\dfrac{x}{\sqrt{a^2-x^2}}-\arcsin\dfrac{x}{a}+C

  6. dxxa2x2=1alnaa2x2x+C\displaystyle\int\dfrac{\mathrm{d}x}{x\sqrt{a^2-x^2}}=\dfrac{1}{a}\ln\left|\dfrac{a-\sqrt{a^2-x^2}}{|x|}\right|+C

  7. dxx2a2x2=a2x2a2x+C\displaystyle\int\dfrac{\mathrm{d}x}{x^2\sqrt{a^2-x^2}}=-\dfrac{\sqrt{a^2-x^2}}{a^2x}+C

  8. a2x2dx=x2a2x2+a22arcsinxa+C\displaystyle\int\sqrt{a^2-x^2}\mathrm{d}x=\dfrac{x}{2}\sqrt{a^2-x^2}+\dfrac{a^2}{2}\arcsin\dfrac{x}{a}+C

  9. (a2x2)3dx=x8(5a22x2)a2x2+38a4arcsinxa+C\displaystyle\int\sqrt{(a^2-x^2)^3}\mathrm{d}x=\dfrac{x}{8}(5a^2-2x^2)\sqrt{a^2-x^2}+\dfrac{3}{8}a^4\arcsin\dfrac{x}{a}+C

  10. xa2x2dx=13(a2x2)3+C\displaystyle\int x\sqrt{a^2-x^2}\mathrm{d}x=-\dfrac{1}{3}\sqrt{(a^2-x^2)^3}+C

  11. x2a2x2dx=x8(2x2a2)a2x2+a48arcsinxa+C\displaystyle\int x^2\sqrt{a^2-x^2}\mathrm{d}x=\dfrac{x}{8}(2x^2-a^2)\sqrt{a^2-x^2}+\dfrac{a^4}{8}\arcsin\dfrac{x}{a}+C

  12. a2x2xdx=a2x2+alnaa2x2x+C\displaystyle\int\dfrac{\sqrt{a^2-x^2}}{x}\mathrm{d}x=\sqrt{a^2-x^2}+a\ln\left|\dfrac{a-\sqrt{a^2-x^2}}{x}\right|+C

  13. a2x2x2dx=a2x2xarcsinxa+C\displaystyle\int\dfrac{\sqrt{a^2-x^2}}{x^2}\mathrm{d}x=-\dfrac{\sqrt{a^2-x^2}}{x}-\arcsin\dfrac{x}{a}+C

含有 ( \sqrt{ax^2+bx+c} ) (( a>0 )) 的积分

  1. dxax2+bx+c=1aln2ax+b+2aax2+bx+c+C\displaystyle\int\dfrac{\mathrm{d}x}{\sqrt{ax^2+bx+c}}=\dfrac{1}{\sqrt{a}}\ln\left|2ax+b+2\sqrt{a}\sqrt{ax^2+bx+c}\right|+C

  2. ax2+bx+cdx=2ax+b4aax2+bx+c+4acb28a3ln2ax+b+2aax2+bx+c+C\displaystyle\int\sqrt{ax^2+bx+c}\mathrm{d}x=\dfrac{2ax+b}{4a}\sqrt{ax^2+bx+c}+\dfrac{4ac-b^2}{8\sqrt{a^3}}\ln\left|2ax+b+2\sqrt{a}\sqrt{ax^2+bx+c}\right|+C

  3. xax2+bx+cdx=1aax2+bx+cb2a3ln2ax+b+2aax2+bx+c+C\displaystyle\int\dfrac{x}{\sqrt{ax^2+bx+c}}\mathrm{d}x=\dfrac{1}{a}\sqrt{ax^2+bx+c}-\dfrac{b}{2\sqrt{a^3}}\ln\left|2ax+b+2\sqrt{a}\sqrt{ax^2+bx+c}\right|+C

  4. dxc+bxax2=1aarcsin2axbb2+4ac+C\displaystyle\int\dfrac{\mathrm{d}x}{\sqrt{c+bx-ax^2}}=\dfrac{1}{\sqrt{a}}\arcsin\dfrac{2ax-b}{\sqrt{b^2+4ac}}+C

  5. c+bxax2dx=2axb4ac+bxax2+b2+4ac8a3arcsin2axbb2+4ac+C\displaystyle\int\sqrt{c+bx-ax^2}\mathrm{d}x=\dfrac{2ax-b}{4a}\sqrt{c+bx-ax^2}+\dfrac{b^2+4ac}{8\sqrt{a^3}}\arcsin\dfrac{2ax-b}{\sqrt{b^2+4ac}}+C

  6. xc+bxax2dx=1ac+bxax2+b2a3arcsin2axbb2+4ac+C\displaystyle\int\dfrac{x}{\sqrt{c+bx-ax^2}}\mathrm{d}x=-\dfrac{1}{a}\sqrt{c+bx-ax^2}+\dfrac{b}{2\sqrt{a^3}}\arcsin\dfrac{2ax-b}{\sqrt{b^2+4ac}}+C

含有 ( \sqrt{\dfrac{x-a}{x-b}} ) 或 ( \sqrt{(x-a)(b-x)} ) 的积分

  1. xaxbdx=(xb)xaxb+(ba)ln(xa+xb)+C\displaystyle\int\sqrt{\dfrac{x-a}{x-b}}\mathrm{d}x=(x-b)\sqrt{\dfrac{x-a}{x-b}}+(b-a)\ln(\sqrt{|x-a|}+\sqrt{|x-b|})+C

  2. xabxdx=(xb)xabx+(ba)arcsinxaba+C\displaystyle\int\sqrt{\dfrac{x-a}{b-x}}\mathrm{d}x=(x-b)\sqrt{\dfrac{x-a}{b-x}}+(b-a)\arcsin\sqrt{\dfrac{x-a}{b-a}}+C

  3. dx(xa)(bx)=2arcsinxaba+C(a<b)\displaystyle\int\dfrac{\mathrm{d}x}{\sqrt{(x-a)(b-x)}}=2\arcsin\sqrt{\dfrac{x-a}{b-a}}+C\quad(a<b)

  4. (xa)(bx)dx=2xab4(xa)(bx)+(ba)24arcsinxaba+C(a<b)\displaystyle\int\sqrt{(x-a)(b-x)}\mathrm{d}x=\dfrac{2x-a-b}{4}\sqrt{(x-a)(b-x)}+\dfrac{(b-a)^2}{4}\arcsin\sqrt{\dfrac{x-a}{b-a}}+C\quad(a<b)

含有三角函数的积分

  1. sinxdx=cosx+C\displaystyle\int\sin x\mathrm{d}x=-\cos x+C

  2. cosxdx=sinx+C\displaystyle\int\cos x\mathrm{d}x=\sin x+C

  3. tanxdx=lncosx+C\displaystyle\int\tan x\mathrm{d}x=-\ln|\cos x|+C

  4. cotxdx=lnsinx+C\displaystyle\int\cot x\mathrm{d}x=\ln|\sin x|+C

  5. secxdx=lntan(π4+x2)+C=lnsecx+tanx+C\displaystyle\int\sec x\mathrm{d}x=\ln\left|\tan\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)\right|+C=\ln|\sec x+\tan x|+C

  6. cscxdx=lntanx2+C=lncscxcotx+C\displaystyle\int\csc x\mathrm{d}x=\ln\left|\tan\dfrac{x}{2}\right|+C=\ln|\csc x-\cot x|+C

  7. sec2xdx=tanx+C\displaystyle\int\sec^2 x\mathrm{d}x=\tan x+C

  8. csc2xdx=cotx+C\displaystyle\int\csc^2 x\mathrm{d}x=-\cot x+C

  9. secxtanxdx=secx+C\displaystyle\int\sec x\tan x\mathrm{d}x=\sec x+C

  10. cscxcotxdx=cscx+C\displaystyle\int\csc x\cot x\mathrm{d}x=-\csc x+C

  11. sin2xdx=x214sin2x+C\displaystyle\int\sin^2 x\mathrm{d}x=\dfrac{x}{2}-\dfrac{1}{4}\sin 2x+C

  12. cos2xdx=x2+14sin2x+C\displaystyle\int\cos^2 x\mathrm{d}x=\dfrac{x}{2}+\dfrac{1}{4}\sin 2x+C

  13. sinnxdx=1nsinn1xcosx+n1nsinn2xdx\displaystyle\int\sin^n x\mathrm{d}x=-\dfrac{1}{n}\sin^{n-1}x\cos x+\dfrac{n-1}{n}\displaystyle\int\sin^{n-2}x\mathrm{d}x

  14. cosnxdx=1ncosn1xsinx+n1ncosn2xdx\displaystyle\int\cos^n x\mathrm{d}x=\dfrac{1}{n}\cos^{n-1}x\sin x+\dfrac{n-1}{n}\displaystyle\int\cos^{n-2}x\mathrm{d}x

  15. dxsinnx=1n1cosxsinn1x+n2n1dxsinn2x\displaystyle\int\dfrac{\mathrm{d}x}{\sin^n x}=-\dfrac{1}{n-1}\cdot\dfrac{\cos x}{\sin^{n-1}x}+\dfrac{n-2}{n-1}\displaystyle\int\dfrac{\mathrm{d}x}{\sin^{n-2}x}

  16. dxcosnx=1n1sinxcosn1x+n2n1dxcosn2x\displaystyle\int\dfrac{\mathrm{d}x}{\cos^n x}=\dfrac{1}{n-1}\cdot\dfrac{\sin x}{\cos^{n-1}x}+\dfrac{n-2}{n-1}\displaystyle\int\dfrac{\mathrm{d}x}{\cos^{n-2}x}

  17. cosmxsinnxdx=1m+ncosm1xsinn+1x+m1m+ncosm2xsinnxdx=1m+ncosm+1xsinn1x+n1m+ncosmxsinn2xdx\displaystyle\int\cos^m x\sin^n x\mathrm{d}x=\dfrac{1}{m+n}\cos^{m-1}x\sin^{n+1}x+\dfrac{m-1}{m+n}\displaystyle\int\cos^{m-2}x\sin^n x\mathrm{d}x=-\dfrac{1}{m+n}\cos^{m+1}x\sin^{n-1}x+\dfrac{n-1}{m+n}\displaystyle\int\cos^m x\sin^{n-2}x\mathrm{d}x

  18. sinaxcosbxdx=12(a+b)cos(a+b)x12(ab)cos(ab)x+C\displaystyle\int\sin ax\cos bx\mathrm{d}x=-\dfrac{1}{2(a+b)}\cos(a+b)x-\dfrac{1}{2(a-b)}\cos(a-b)x+C

  19. sinaxsinbxdx=12(a+b)sin(a+b)x+12(ab)sin(ab)x+C\displaystyle\int\sin ax\sin bx\mathrm{d}x=-\dfrac{1}{2(a+b)}\sin(a+b)x+\dfrac{1}{2(a-b)}\sin(a-b)x+C

  20. cosaxcosbxdx=12(a+b)sin(a+b)x+12(ab)sin(ab)x+C\displaystyle\int\cos ax\cos bx\mathrm{d}x=\dfrac{1}{2(a+b)}\sin(a+b)x+\dfrac{1}{2(a-b)}\sin(a-b)x+C

  21. dxa+bsinx=2a2b2arctantanx2a2b2+C(a2>b2)\displaystyle\int\dfrac{\mathrm{d}x}{a+b\sin x}=\dfrac{2}{\sqrt{a^2-b^2}}\arctan\dfrac{\tan\dfrac{x}{2}}{\sqrt{a^2-b^2}}+C\quad(a^2>b^2)

  22. dxa+bsinx=1b2a2lntanx2a2b2+tanx2a2b2+C(a2<b2)\displaystyle\int\dfrac{\mathrm{d}x}{a+b\sin x}=\dfrac{1}{\sqrt{b^2-a^2}}\ln\left|\dfrac{\tan\dfrac{x}{2}}{\sqrt{a^2-b^2}}+\dfrac{\tan\dfrac{x}{2}}{\sqrt{a^2-b^2}}\right|+C\quad(a^2<b^2)

  23. dxa+bcosx=2a+ba+babarctan(aba+btanx2)+C(a2>b2)\displaystyle\int\dfrac{\mathrm{d}x}{a+b\cos x}=\dfrac{2}{a+b}\sqrt{\dfrac{a+b}{a-b}}\arctan\left(\sqrt{\dfrac{a-b}{a+b}}\tan\dfrac{x}{2}\right)+C\quad(a^2>b^2)

  24. dxa+bcosx=1a+ba+bbalntanx2a2b2+tanx2a2b2+C(a2<b2)\displaystyle\int\dfrac{\mathrm{d}x}{a+b\cos x}=\dfrac{1}{a+b}\sqrt{\dfrac{a+b}{b-a}}\ln\left|\dfrac{\tan\dfrac{x}{2}}{\sqrt{a^2-b^2}}+\dfrac{\tan\dfrac{x}{2}}{\sqrt{a^2-b^2}}\right|+C\quad(a^2<b^2)

  25. dxa2cos2x+b2sin2x=1abarctan(batanx)+C\displaystyle\int\dfrac{\mathrm{d}x}{a^2\cos^2 x+b^2\sin^2 x}=\dfrac{1}{ab}\arctan\left(\dfrac{b}{a}\tan x\right)+C

  26. dxa2cos2xb2sin2x=12ablnbtanx+abtanxa+C\displaystyle\int\dfrac{\mathrm{d}x}{a^2\cos^2 x-b^2\sin^2 x}=\dfrac{1}{2ab}\ln\left|\dfrac{b\tan x+a}{b\tan x-a}\right|+C

  27. xsinaxdx=1a2sinax1axcosax+C\displaystyle\int x\sin ax\mathrm{d}x=\dfrac{1}{a^2}\sin ax-\dfrac{1}{a}x\cos ax+C

  28. x2sinaxdx=1ax2cosax+2a2xsinax+2a3cosax+C\displaystyle\int x^2\sin ax\mathrm{d}x=-\dfrac{1}{a}x^2\cos ax+\dfrac{2}{a^2}x\sin ax+\dfrac{2}{a^3}\cos ax+C

  29. xcosaxdx=1a2cosax+1axsinax+C\displaystyle\int x\cos ax\mathrm{d}x=\dfrac{1}{a^2}\cos ax+\dfrac{1}{a}x\sin ax+C

  30. x2cosaxdx=1ax2sinax+2a2xcosax2a3sinax+C\displaystyle\int x^2\cos ax\mathrm{d}x=\dfrac{1}{a}x^2\sin ax+\dfrac{2}{a^2}x\cos ax-\dfrac{2}{a^3}\sin ax+C

含有反三角函数的积分(其中 ( a>0 ))

  1. arcsinxadx=xarcsinxa+a2x2+C\displaystyle\int\arcsin\dfrac{x}{a}\mathrm{d}x=x\arcsin\dfrac{x}{a}+\sqrt{a^2-x^2}+C

  2. xarcsinxadx=(x22a24)arcsinxa+x4a2x2+C\displaystyle\int x\arcsin\dfrac{x}{a}\mathrm{d}x=\left(\dfrac{x^2}{2}-\dfrac{a^2}{4}\right)\arcsin\dfrac{x}{a}+\dfrac{x}{4}\sqrt{a^2-x^2}+C

  3. x2arcsinxadx=x33arcsinxa+19(x2+2a2)a2x2+C\displaystyle\int x^2\arcsin\dfrac{x}{a}\mathrm{d}x=\dfrac{x^3}{3}\arcsin\dfrac{x}{a}+\dfrac{1}{9}(x^2+2a^2)\sqrt{a^2-x^2}+C

  4. arccosxadx=xarccosxaa2x2+C\displaystyle\int\arccos\dfrac{x}{a}\mathrm{d}x=x\arccos\dfrac{x}{a}-\sqrt{a^2-x^2}+C

  5. xarccosxadx=(x22a24)arccosxax4a2x2+C\displaystyle\int x\arccos\dfrac{x}{a}\mathrm{d}x=\left(\dfrac{x^2}{2}-\dfrac{a^2}{4}\right)\arccos\dfrac{x}{a}-\dfrac{x}{4}\sqrt{a^2-x^2}+C

  6. x2arccosxadx=x33arccosxa19(x2+2a2)a2x2+C\displaystyle\int x^2\arccos\dfrac{x}{a}\mathrm{d}x=\dfrac{x^3}{3}\arccos\dfrac{x}{a}-\dfrac{1}{9}(x^2+2a^2)\sqrt{a^2-x^2}+C

  7. arctanxadx=xarctanxaa2ln(a2+x2)+C\displaystyle\int\arctan\dfrac{x}{a}\mathrm{d}x=x\arctan\dfrac{x}{a}-\dfrac{a}{2}\ln(a^2+x^2)+C

  8. xarctanxadx=12(a2+x2)arctanxaa2x+C\displaystyle\int x\arctan\dfrac{x}{a}\mathrm{d}x=\dfrac{1}{2}(a^2+x^2)\arctan\dfrac{x}{a}-\dfrac{a}{2}x+C

  9. x2arctanxadx=x33arctanxaa6x2+a36ln(a2+x2)+C\displaystyle\int x^2\arctan\dfrac{x}{a}\mathrm{d}x=\dfrac{x^3}{3}\arctan\dfrac{x}{a}-\dfrac{a}{6}x^2+\dfrac{a^3}{6}\ln(a^2+x^2)+C

含有指数函数的积分

  1. axdx=1lnaax+C\displaystyle\int a^x\mathrm{d}x=\dfrac{1}{\ln a}a^x+C

  2. eaxdx=1aeax+C\displaystyle\int e^{ax}\mathrm{d}x=\dfrac{1}{a}e^{ax}+C

  3. xeaxdx=1a2(ax1)eax+C\displaystyle\int xe^{ax}\mathrm{d}x=\dfrac{1}{a^2}(ax-1)e^{ax}+C

  4. xneaxdx=1axneaxnaxn1eaxdx\displaystyle\int x^n e^{ax}\mathrm{d}x=\dfrac{1}{a}x^n e^{ax}-\dfrac{n}{a}\displaystyle\int x^{n-1}e^{ax}\mathrm{d}x

  5. xaxdx=xlnaax1(lna)2ax+C\displaystyle\int x a^x\mathrm{d}x=\dfrac{x}{\ln a}a^x-\dfrac{1}{(\ln a)^2}a^x+C

  6. xnaxdx=1lnaxnaxnlnaxn1axdx\displaystyle\int x^n a^x\mathrm{d}x=\dfrac{1}{\ln a}x^n a^x-\dfrac{n}{\ln a}\displaystyle\int x^{n-1}a^x\mathrm{d}x

  7. eaxsinbxdx=1a2+b2eax(asinbxbcosbx)+C\displaystyle\int e^{ax}\sin bx\mathrm{d}x=\dfrac{1}{a^2+b^2}e^{ax}(a\sin bx-b\cos bx)+C

  8. eaxcosbxdx=1a2+b2eax(acosbx+bsinbx)+C\displaystyle\int e^{ax}\cos bx\mathrm{d}x=\dfrac{1}{a^2+b^2}e^{ax}(a\cos bx+b\sin bx)+C

  9. eaxsinnbxdx=1a2+b2n2eaxsinn1bx(asinbxnbcosbx)+n(n1)b2a2+b2n2eaxsinn2bxdx\displaystyle\int e^{ax}\sin^n bx\mathrm{d}x=\dfrac{1}{a^2+b^2n^2}e^{ax}\sin^{n-1}bx(a\sin bx-nb\cos bx)+\dfrac{n(n-1)b^2}{a^2+b^2n^2}\displaystyle\int e^{ax}\sin^{n-2}bx\mathrm{d}x

  10. eaxcosnbxdx=1a2+b2n2eaxcosn1bx(acosbx+nbsinbx)+n(n1)b2a2+b2n2eaxcosn2bxdx\displaystyle\int e^{ax}\cos^n bx\mathrm{d}x=\dfrac{1}{a^2+b^2n^2}e^{ax}\cos^{n-1}bx(a\cos bx+nb\sin bx)+\dfrac{n(n-1)b^2}{a^2+b^2n^2}\displaystyle\int e^{ax}\cos^{n-2}bx\mathrm{d}x

含有对数函数的积分

  1. lnxdx=xlnxx+C\displaystyle\int\ln x\mathrm{d}x=x\ln x-x+C

  2. dxxlnx=lnlnx+C\displaystyle\int\dfrac{\mathrm{d}x}{x\ln x}=\ln|\ln x|+C

  3. xnlnxdx=1n+1xn+1(lnx1n+1)+C\displaystyle\int x^n\ln x\mathrm{d}x=\dfrac{1}{n+1}x^{n+1}\left(\ln x-\dfrac{1}{n+1}\right)+C

  4. (lnx)ndx=x(lnx)nn(lnx)n1dx\displaystyle\int(\ln x)^n\mathrm{d}x=x(\ln x)^n-n\displaystyle\int(\ln x)^{n-1}\mathrm{d}x

  5. xm(lnx)ndx=1m+1xm+1(lnx)nnm+1xm(lnx)n1dx\displaystyle\int x^m(\ln x)^n\mathrm{d}x=\dfrac{1}{m+1}x^{m+1}(\ln x)^n-\dfrac{n}{m+1}\displaystyle\int x^m(\ln x)^{n-1}\mathrm{d}x

含有双曲函数的积分

  1. shxdx=chx+C\displaystyle\int\operatorname{sh} x\mathrm{d}x=\operatorname{ch} x+C

  2. chxdx=shx+C\displaystyle\int\operatorname{ch} x\mathrm{d}x=\operatorname{sh} x+C

  3. thxdx=lnchx+C\displaystyle\int\operatorname{th} x\mathrm{d}x=\ln\operatorname{ch} x+C

  4. sh2xdx=x2+14sh2x+C\displaystyle\int\operatorname{sh}^2 x\mathrm{d}x=-\dfrac{x}{2}+\dfrac{1}{4}\operatorname{sh} 2x+C

  5. ch2xdx=x2+14sh2x+C\displaystyle\int\operatorname{ch}^2 x\mathrm{d}x=\dfrac{x}{2}+\dfrac{1}{4}\operatorname{sh} 2x+C

(十六)定积分

  1. ππcosnxdx=ππsinnxdx=0\displaystyle\int_{-\pi}^{\pi}\cos nx\mathrm{d}x=\displaystyle\int_{-\pi}^{\pi}\sin nx\mathrm{d}x=0

  2. ππcosmxsinnxdx=0\displaystyle\int_{-\pi}^{\pi}\cos mx\sin nx\mathrm{d}x=0

  3. ππcosmxcosnxdx={0,mnπ,m=n\displaystyle\int_{-\pi}^{\pi}\cos mx\cos nx\mathrm{d}x=\begin{cases}0,&m\neq n\\\pi,&m=n\end{cases}

  4. ππsinmxsinnxdx={0,mnπ,m=n\displaystyle\int_{-\pi}^{\pi}\sin mx\sin nx\mathrm{d}x=\begin{cases}0,&m\neq n\\\pi,&m=n\end{cases}

  5. 0πsinmxsinnxdx=0πcosmxcosnxdx={0,mnπ2,m=n\displaystyle\int_0^{\pi}\sin mx\sin nx\mathrm{d}x=\displaystyle\int_0^{\pi}\cos mx\cos nx\mathrm{d}x=\begin{cases}0,&m\neq n\\\dfrac{\pi}{2},&m=n\end{cases}

  6. In=0π2sinnxdx=0π2cosnxdx,In=n1nIn2\displaystyle I_n=\displaystyle\int_0^{\frac{\pi}{2}}\sin^n x\mathrm{d}x=\displaystyle\int_0^{\frac{\pi}{2}}\cos^n x\mathrm{d}x,\quad I_n=\dfrac{n-1}{n}I_{n-2}